0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i111[0] > 0 && 1 = i111[0] % 2 →* TRUE)∧(i111[0] →* i111[1])∧(i110[0] →* i110[1])∧(i108[0] →* i108[1]))
(1) -> (2), if ((i108[1] →* i108[2])∧(i110[1] * i108[1] →* i110[2])∧(i111[1] →* i111[2]))
(2) -> (0), if ((i110[2] →* i110[0])∧(i108[2] * i108[2] →* i108[0])∧(i111[2] / 2 →* i111[0]))
(2) -> (3), if ((i110[2] →* i110[3])∧(i111[2] / 2 →* i111[3])∧(i108[2] * i108[2] →* i108[3]))
(3) -> (4), if ((i110[3] →* i110[4])∧(i108[3] →* i108[4])∧(i111[3] % 2 >= 0 && !(i111[3] % 2 = 1) && i111[3] > 0 →* TRUE)∧(i111[3] →* i111[4]))
(4) -> (0), if ((i108[4] * i108[4] →* i108[0])∧(i110[4] →* i110[0])∧(i111[4] / 2 →* i111[0]))
(4) -> (3), if ((i111[4] / 2 →* i111[3])∧(i110[4] →* i110[3])∧(i108[4] * i108[4] →* i108[3]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i111[0] > 0 && 1 = i111[0] % 2 →* TRUE)∧(i111[0] →* i111[1])∧(i110[0] →* i110[1])∧(i108[0] →* i108[1]))
(1) -> (2), if ((i108[1] →* i108[2])∧(i110[1] * i108[1] →* i110[2])∧(i111[1] →* i111[2]))
(2) -> (0), if ((i110[2] →* i110[0])∧(i108[2] * i108[2] →* i108[0])∧(i111[2] / 2 →* i111[0]))
(2) -> (3), if ((i110[2] →* i110[3])∧(i111[2] / 2 →* i111[3])∧(i108[2] * i108[2] →* i108[3]))
(3) -> (4), if ((i110[3] →* i110[4])∧(i108[3] →* i108[4])∧(i111[3] % 2 >= 0 && !(i111[3] % 2 = 1) && i111[3] > 0 →* TRUE)∧(i111[3] →* i111[4]))
(4) -> (0), if ((i108[4] * i108[4] →* i108[0])∧(i110[4] →* i110[0])∧(i111[4] / 2 →* i111[0]))
(4) -> (3), if ((i111[4] / 2 →* i111[3])∧(i110[4] →* i110[3])∧(i108[4] * i108[4] →* i108[3]))
(1) (&&(>(i111[0], 0), =(1, %(i111[0], 2)))=TRUE∧i111[0]=i111[1]∧i110[0]=i110[1]∧i108[0]=i108[1] ⇒ LOAD845(i108[0], i111[0], i110[0])≥NonInfC∧LOAD845(i108[0], i111[0], i110[0])≥COND_LOAD845(&&(>(i111[0], 0), =(1, %(i111[0], 2))), i108[0], i111[0], i110[0])∧(UIncreasing(COND_LOAD845(&&(>(i111[0], 0), =(1, %(i111[0], 2))), i108[0], i111[0], i110[0])), ≥))
(2) (>(i111[0], 0)=TRUE∧>=(1, %(i111[0], 2))=TRUE∧<=(1, %(i111[0], 2))=TRUE ⇒ LOAD845(i108[0], i111[0], i110[0])≥NonInfC∧LOAD845(i108[0], i111[0], i110[0])≥COND_LOAD845(&&(>(i111[0], 0), =(1, %(i111[0], 2))), i108[0], i111[0], i110[0])∧(UIncreasing(COND_LOAD845(&&(>(i111[0], 0), =(1, %(i111[0], 2))), i108[0], i111[0], i110[0])), ≥))
(3) (i111[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD845(&&(>(i111[0], 0), =(1, %(i111[0], 2))), i108[0], i111[0], i110[0])), ≥)∧[(-1)Bound*bni_30] + [bni_30]i111[0] ≥ 0∧[(-1)bso_31] ≥ 0)
(4) (i111[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD845(&&(>(i111[0], 0), =(1, %(i111[0], 2))), i108[0], i111[0], i110[0])), ≥)∧[(-1)Bound*bni_30] + [bni_30]i111[0] ≥ 0∧[(-1)bso_31] ≥ 0)
(5) (i111[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD845(&&(>(i111[0], 0), =(1, %(i111[0], 2))), i108[0], i111[0], i110[0])), ≥)∧[(-1)Bound*bni_30] + [bni_30]i111[0] ≥ 0∧[(-1)bso_31] ≥ 0)
(6) (i111[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD845(&&(>(i111[0], 0), =(1, %(i111[0], 2))), i108[0], i111[0], i110[0])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_30] + [bni_30]i111[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_31] ≥ 0)
(7) (i111[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD845(&&(>(i111[0], 0), =(1, %(i111[0], 2))), i108[0], i111[0], i110[0])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_30 + bni_30] + [bni_30]i111[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_31] ≥ 0)
(8) (i111[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD845(&&(>(i111[0], 0), =(1, %(i111[0], 2))), i108[0], i111[0], i110[0])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_30 + bni_30] + [bni_30]i111[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_31] ≥ 0)
(9) (&&(>(i111[0], 0), =(1, %(i111[0], 2)))=TRUE∧i111[0]=i111[1]∧i110[0]=i110[1]∧i108[0]=i108[1] ⇒ COND_LOAD845(TRUE, i108[1], i111[1], i110[1])≥NonInfC∧COND_LOAD845(TRUE, i108[1], i111[1], i110[1])≥LOAD888(i108[1], i111[1], *(i110[1], i108[1]))∧(UIncreasing(LOAD888(i108[1], i111[1], *(i110[1], i108[1]))), ≥))
(10) (>(i111[0], 0)=TRUE∧>=(1, %(i111[0], 2))=TRUE∧<=(1, %(i111[0], 2))=TRUE ⇒ COND_LOAD845(TRUE, i108[0], i111[0], i110[0])≥NonInfC∧COND_LOAD845(TRUE, i108[0], i111[0], i110[0])≥LOAD888(i108[0], i111[0], *(i110[0], i108[0]))∧(UIncreasing(LOAD888(i108[1], i111[1], *(i110[1], i108[1]))), ≥))
(11) (i111[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(LOAD888(i108[1], i111[1], *(i110[1], i108[1]))), ≥)∧[(-1)Bound*bni_32] + [bni_32]i111[0] ≥ 0∧[1 + (-1)bso_33] ≥ 0)
(12) (i111[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(LOAD888(i108[1], i111[1], *(i110[1], i108[1]))), ≥)∧[(-1)Bound*bni_32] + [bni_32]i111[0] ≥ 0∧[1 + (-1)bso_33] ≥ 0)
(13) (i111[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD888(i108[1], i111[1], *(i110[1], i108[1]))), ≥)∧[(-1)Bound*bni_32] + [bni_32]i111[0] ≥ 0∧[1 + (-1)bso_33] ≥ 0)
(14) (i111[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD888(i108[1], i111[1], *(i110[1], i108[1]))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_32] + [bni_32]i111[0] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_33] ≥ 0)
(15) (i111[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD888(i108[1], i111[1], *(i110[1], i108[1]))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_32 + bni_32] + [bni_32]i111[0] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_33] ≥ 0)
(16) (i111[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD888(i108[1], i111[1], *(i110[1], i108[1]))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_32 + bni_32] + [bni_32]i111[0] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_33] ≥ 0)
(17) (&&(>(i111[0], 0), =(1, %(i111[0], 2)))=TRUE∧i111[0]=i111[1]∧i110[0]=i110[1]∧i108[0]=i108[1]∧i108[1]=i108[2]∧*(i110[1], i108[1])=i110[2]∧i111[1]=i111[2] ⇒ LOAD888(i108[2], i111[2], i110[2])≥NonInfC∧LOAD888(i108[2], i111[2], i110[2])≥LOAD845(*(i108[2], i108[2]), /(i111[2], 2), i110[2])∧(UIncreasing(LOAD845(*(i108[2], i108[2]), /(i111[2], 2), i110[2])), ≥))
(18) (>(i111[0], 0)=TRUE∧>=(1, %(i111[0], 2))=TRUE∧<=(1, %(i111[0], 2))=TRUE ⇒ LOAD888(i108[1], i111[0], *(i110[1], i108[1]))≥NonInfC∧LOAD888(i108[1], i111[0], *(i110[1], i108[1]))≥LOAD845(*(i108[1], i108[1]), /(i111[0], 2), *(i110[1], i108[1]))∧(UIncreasing(LOAD845(*(i108[2], i108[2]), /(i111[2], 2), i110[2])), ≥))
(19) (i111[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[2], i108[2]), /(i111[2], 2), i110[2])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]i111[0] ≥ 0∧[(-1)bso_38] + i111[0] + [-1]max{i111[0], [-1]i111[0]} ≥ 0)
(20) (i111[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[2], i108[2]), /(i111[2], 2), i110[2])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]i111[0] ≥ 0∧[(-1)bso_38] + i111[0] + [-1]max{i111[0], [-1]i111[0]} ≥ 0)
(21) (i111[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2]i111[0] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[2], i108[2]), /(i111[2], 2), i110[2])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]i111[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(22) (i111[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2]i111[0] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[2], i108[2]), /(i111[2], 2), i110[2])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]i111[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(23) (i111[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2] + [2]i111[0] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[2], i108[2]), /(i111[2], 2), i110[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i111[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(24) (i111[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2] + [2]i111[0] ≥ 0∧i108[1] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[2], i108[2]), /(i111[2], 2), i110[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i111[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(25) (i111[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2] + [2]i111[0] ≥ 0∧i108[1] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[2], i108[2]), /(i111[2], 2), i110[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i111[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(26) (i111[0] ≥ 0∧[1] ≥ 0∧i108[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i111[0] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[2], i108[2]), /(i111[2], 2), i110[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i111[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(27) (i111[0] ≥ 0∧[1] ≥ 0∧i108[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i111[0] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[2], i108[2]), /(i111[2], 2), i110[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i111[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(28) (i110[3]=i110[4]∧i108[3]=i108[4]∧&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0))=TRUE∧i111[3]=i111[4] ⇒ LOAD845(i108[3], i111[3], i110[3])≥NonInfC∧LOAD845(i108[3], i111[3], i110[3])≥COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])∧(UIncreasing(COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])), ≥))
(29) (>(i111[3], 0)=TRUE∧>=(%(i111[3], 2), 0)=TRUE∧<(%(i111[3], 2), 1)=TRUE ⇒ LOAD845(i108[3], i111[3], i110[3])≥NonInfC∧LOAD845(i108[3], i111[3], i110[3])≥COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])∧(UIncreasing(COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])), ≥))
(30) (>(i111[3], 0)=TRUE∧>=(%(i111[3], 2), 0)=TRUE∧>(%(i111[3], 2), 1)=TRUE ⇒ LOAD845(i108[3], i111[3], i110[3])≥NonInfC∧LOAD845(i108[3], i111[3], i110[3])≥COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])∧(UIncreasing(COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])), ≥))
(31) (i111[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i111[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)
(32) (i111[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i111[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)
(33) (i111[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i111[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)
(34) (i111[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i111[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)
(35) (i111[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i111[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)
(36) (i111[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i111[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)
(37) (i111[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39] + [bni_39]i111[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)
(38) (i111[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39] + [bni_39]i111[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)
(39) (i111[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39 + bni_39] + [bni_39]i111[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)
(40) (i111[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39 + bni_39] + [bni_39]i111[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)
(41) (i111[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39 + bni_39] + [bni_39]i111[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)
(42) (i111[3] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39 + bni_39] + [bni_39]i111[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)
(43) (i110[3]=i110[4]∧i108[3]=i108[4]∧&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0))=TRUE∧i111[3]=i111[4] ⇒ COND_LOAD8451(TRUE, i108[4], i111[4], i110[4])≥NonInfC∧COND_LOAD8451(TRUE, i108[4], i111[4], i110[4])≥LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])∧(UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥))
(44) (>(i111[3], 0)=TRUE∧>=(%(i111[3], 2), 0)=TRUE∧<(%(i111[3], 2), 1)=TRUE ⇒ COND_LOAD8451(TRUE, i108[3], i111[3], i110[3])≥NonInfC∧COND_LOAD8451(TRUE, i108[3], i111[3], i110[3])≥LOAD845(*(i108[3], i108[3]), /(i111[3], 2), i110[3])∧(UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥))
(45) (>(i111[3], 0)=TRUE∧>=(%(i111[3], 2), 0)=TRUE∧>(%(i111[3], 2), 1)=TRUE ⇒ COND_LOAD8451(TRUE, i108[3], i111[3], i110[3])≥NonInfC∧COND_LOAD8451(TRUE, i108[3], i111[3], i110[3])≥LOAD845(*(i108[3], i108[3]), /(i111[3], 2), i110[3])∧(UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥))
(46) (i111[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧[(-1)bso_42] + i111[3] + [-1]max{i111[3], [-1]i111[3]} ≥ 0)
(47) (i111[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧[(-1)bso_42] + i111[3] + [-1]max{i111[3], [-1]i111[3]} ≥ 0)
(48) (i111[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧[(-1)bso_42] + i111[3] + [-1]max{i111[3], [-1]i111[3]} ≥ 0)
(49) (i111[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧[(-1)bso_42] + i111[3] + [-1]max{i111[3], [-1]i111[3]} ≥ 0)
(50) (i111[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]i111[3] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧[(-1)bso_42] ≥ 0)
(51) (i111[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧[2]i111[3] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧[(-1)bso_42] ≥ 0)
(52) (i111[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]i111[3] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(53) (i111[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧[2]i111[3] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(54) (i111[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2] + [2]i111[3] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(55) (i111[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2] + [2]i111[3] ≥ 0∧i108[3] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(56) (i111[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2] + [2]i111[3] ≥ 0∧i108[3] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(57) (i111[3] ≥ 0∧i108[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i111[3] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(58) (i111[3] ≥ 0∧i108[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i111[3] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(59) (i111[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧[2] + [2]i111[3] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(60) (i111[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧[2] + [2]i111[3] ≥ 0∧i108[3] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(61) (i111[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧[2] + [2]i111[3] ≥ 0∧i108[3] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(62) (i111[3] ≥ 0∧0 ≥ 0∧i108[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i111[3] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(63) (i111[3] ≥ 0∧0 ≥ 0∧i108[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i111[3] ≥ 0 ⇒ (UIncreasing(LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i111[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD845(x1, x2, x3)) = x2
POL(COND_LOAD845(x1, x2, x3, x4)) = x3
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(=(x1, x2)) = [-1]
POL(1) = [1]
POL(2) = [2]
POL(LOAD888(x1, x2, x3)) = [-1] + x2
POL(*(x1, x2)) = x1·x2
POL(COND_LOAD8451(x1, x2, x3, x4)) = [-1] + x3
POL(>=(x1, x2)) = [-1]
POL(!(x1)) = [-1]
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}
POL(/(x1, 2)1 @ {LOAD845_3/1}) = max{x1, [-1]x1} + [-1]
COND_LOAD845(TRUE, i108[1], i111[1], i110[1]) → LOAD888(i108[1], i111[1], *(i110[1], i108[1]))
LOAD845(i108[3], i111[3], i110[3]) → COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])
LOAD845(i108[0], i111[0], i110[0]) → COND_LOAD845(&&(>(i111[0], 0), =(1, %(i111[0], 2))), i108[0], i111[0], i110[0])
COND_LOAD845(TRUE, i108[1], i111[1], i110[1]) → LOAD888(i108[1], i111[1], *(i110[1], i108[1]))
LOAD888(i108[2], i111[2], i110[2]) → LOAD845(*(i108[2], i108[2]), /(i111[2], 2), i110[2])
LOAD845(i108[3], i111[3], i110[3]) → COND_LOAD8451(&&(&&(>=(%(i111[3], 2), 0), !(=(%(i111[3], 2), 1))), >(i111[3], 0)), i108[3], i111[3], i110[3])
COND_LOAD8451(TRUE, i108[4], i111[4], i110[4]) → LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])
LOAD845(i108[0], i111[0], i110[0]) → COND_LOAD845(&&(>(i111[0], 0), =(1, %(i111[0], 2))), i108[0], i111[0], i110[0])
LOAD888(i108[2], i111[2], i110[2]) → LOAD845(*(i108[2], i108[2]), /(i111[2], 2), i110[2])
COND_LOAD8451(TRUE, i108[4], i111[4], i110[4]) → LOAD845(*(i108[4], i108[4]), /(i111[4], 2), i110[4])
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(2) -> (0), if ((i110[2] →* i110[0])∧(i108[2] * i108[2] →* i108[0])∧(i111[2] / 2 →* i111[0]))
(4) -> (0), if ((i108[4] * i108[4] →* i108[0])∧(i110[4] →* i110[0])∧(i111[4] / 2 →* i111[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |